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Abstract. The optimal-velocity model, as proposed by Bando et al. [1], shows unrealistic values of the
acceleration for various optimal-velocity functions [2,3]. We discuss different approaches of how to correct
this problem. Multiple look-ahead (many-neighbour interaction) models are the most promising candi-
dates in reducing accelerations and decelerations to realistic values. We focus on two such models and, in
particular, their linear stability and how these affect the vehicle dynamics and wave solutions. As found
earlier [4], multiple look-ahead models reproduce many real flow features, and our results further support
the necessity of this ansatz. However, the problem of non-locality arises when they are transformed into the
corresponding continuum model. We discuss three methods of how to interpret many-neighbour interaction
in macroscopic models.

PACS. 45.70.Vn Granular models of complex systems; traffic flow – 89.90.+n Other topics in areas of
applied and interdisciplinary physics – 47.50.+d Non-Newtonian fluid flows

1 Introduction

Highway traffic has been a growing area of research for
almost fifty years [5–7]. As our roads become more con-
gested, this research will take on a greater significance to
modern society. It is therefore important to develop a ba-
sic understanding of how traffic behaves in order to adapt
our road networks to best serve driver needs.

This publication is concerned with the optimal-
velocity (OV) model proposed by Bando et al. [1] and
some modifications to it, which are aimed at adding ex-
tra realism to the solutions. The original (standard OV)
model, which has attracted much interest in the traffic
modelling community, contains some unrealistic features
such as crashes (Sect. 2.1) and extreme values for both
the acceleration and deceleration (Sect. 2.2).

Based on numerical simulations, we will discuss ex-
plicit limitations of acceleration and deceleration (Sect. 3),
time delay (Sect. 4) and multiple look-ahead (Sects. 5
and 7) as candidates for achieving such goals. For the
latter case, we also present a stability analysis (Sect. 6).
We conclude with an analysis of modelling multiple look-
ahead in continuum models in Section 8, where the prob-
lem of non-locality arises.

We would like to mention at this point that this project
was supported by TRL Ltd who have, as one of their ma-
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jor activities, the development of simulation software to
model real life motorway scenarios.

2 The optimal-velocity model: set-backs
and modifications

In the optimal-velocity car-following model of Bando
et al. [1], the acceleration of every car is determined by
its velocity vn and a desired speed Vn(bn) depending on
the headway bn to the car in front

v̇n = an [Vn(bn) − vn] . (1)

Here, Vn(bn) is called the optimal-velocity (OV) function
and an the driver’s sensitivity. The headway bn is the dis-
tance of the nth car to the car ahead

bn(t) = xn−1(t) − xn(t) (2)

with
ẋn(t) = vn(t). (3)

As mentioned earlier, this model is able to reproduce var-
ious features of road traffic and has been the subject of
much research [8–10]. In what follows, we will adopt the
usual approach of setting all OV functions and sensitiv-
ities to be the same, Vn ≡ V and an ≡ a, respectively.
This corresponds effectively to modelling single-species
traffic [11]. In addition and unless stated otherwise, we
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Fig. 1. The optimal-velocity function of Bando et al. [2], equa-
tion (4). Maximum gradient and turning point at b = 25 m.

choose a = 2.0 s−1 and the OV function proposed by
Bando et al. [9]

V (b) = max {0, 16.8 [tanh(0.0860(b− 25)) + 0.913]}m/s,
(4)

based on real traffic data gathered from Japanese motor-
ways, as shown in Figure 1.

2.1 Crashes

Despite being one of the most promising candidates among
all car-following models, the OV model has major set-
backs. We found the occurrence of crashes at values of
the sensitivity smaller than about one, a ≤ 1 s−1. Such
incidents take place on a circular road, for example, as
the shock waves of stop-and-go traffic steepen until vehicle
trajectories finally overlap.

One might argue that such behaviour might be avoided
by simply taking values 1 s−1 < a < 2 s−1 so that crashes
will not occur, but stop-and-go traffic still evolves. How-
ever, small values of the sensitivity are typical for vehicles
of large inertia [12], and we will see in the next section
that this issue cannot be tackled quite that simply. The
root of the problem lies in unrealistic acceleration.

2.2 Acceleration and breaking

Although stability is strongly dependent on the shape of
the OV function (Sect. 6), we find that when using one
that is calibrated from real traffic data such as in equa-
tion (4), a major problem arises in the maximum values
of the acceleration and deceleration [3,9]. Arguably, this
represents the biggest set-back of the standard OV model.

As an example, we investigated the acceleration of one
vehicle on a straight road (Fig. 2), going through a trav-
elling wave pattern connecting two different headways.

We observed absolute values of acceleration up to
25 m/s2, substantially above any realistic value. In fact,
we were not able to determine an OV function which gives
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Fig. 2. Plot of acceleration of braking vehicle going through
a travelling wave connecting upstream headways, bu = 60 m,
with downstream headways, bd = 20 m, in the OV model with
OV function (4). Here, a = 2.0 s−1. The unrealistic magnitudes
in the simple look-ahead (β0 = 1.0) model can be reduced
drastically to more reasonable values by double look-ahead,
β0 = 0.7, β1 = 0.3 (see Sect. 5 for definition of {βi}).

reasonable values for the acceleration and the right orders
for the speed-headway relation, while at the same time
reproducing a sensible fundamental diagram including a
region of instability close to real data. This raises the ques-
tion as to what extent the standard model represents real
traffic flow. As presented in what follows, one might be
tempted to deal with this problem in three different ways:

1. limiting the acceleration/deceleration explicitly;
2. introduce delay;
3. introduce multiple look-ahead (many-neighbour inter-

action) coupling a car to more than one vehicle ahead.

Before we continue it shall be pointed out, though, that
Gipps [13] developed a model which incorporated a maxi-
mum and minimum acceleration that a driver would wish
to undertake. These values took mean values of 1.7 m/s2

and −3.4m/s2, respectively. This model is widely used in
engineering circles to simulate traffic flow, and the values
were taken from experiments with real traffic.

In addition, Sugiyama et al. [14] and Wagner et al. [15]
have carried out extensive fitting of models to vehicle data
based on minimising discrepancies of headway and ve-
locity between data and model predictions. Acceleration,
however, did not play a role in the fitting routines so that
this unrealistic model feature was not further investigated.

3 Limiting the acceleration and breaking
of vehicles by cut-off

In the previous section, we saw that when uniform flow
is stable and crashes do not occur, travelling waves may
form in which individual vehicles may have unrealistic ac-
celerations. In this section, we attempt to remedy this
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problem by replacing the linear velocity-difference accel-
eration law in equation (1) with a nonlinear (non-smooth)
acceleration law. (Note that the standard OV model is al-
ready most generally nonlinear as the OV function may
be nonlinear.)

Our modified model is

ẍn = mid {−amin, a [V (bn) − ẋn] , amax} , (5)

where amin, amax > 0. This model states that if the dif-
ference of optimal velocity and actual velocity is small,
then acceleration is given by the usual linear-in-velocity
difference law. If the velocity difference is larger, so that
the standard model would produce a large acceleration,
then a saturated maximum acceleration amax or maximum
breaking amin is produced.

The standard OV model is equivalent to equation (5)
with amin, amax → ∞. To simplify matters, we briefly
consider the cases of “limiting breaking and acceleration”
(amin finite, amax finite), “limiting only acceleration” (amin

infinite, amax finite), and “limiting only breaking” (amin

finite, amax infinite).
Note that the linear stability of the uniform flow solu-

tions of equation (5) is identical to that of the standard
OV model (Sect. 6), as small perturbations to uniform
flow are unchanged in this modified equation. However,
the global solution behaviour may be different.

3.1 Restrict maximum and minimum acceleration

Restricting both the maximum and minimum accelera-
tions to 13 m/s2, we found that shock waves are travel-
ling at a slower speed upstream than previously observed.
Moreover, reducing the accelerations to 12 m/s2 produced
crashes. This is not desirable as we are trying to produce
realistic accelerations and driver behaviour.

We conclude that restricting maximum and minimum
acceleration at the same time by a cut-off leads to crashes
and, hence, an unrealistic traffic flow model.

3.2 Restrict positive acceleration

First, we allow unlimited breaking and restrict the positive
acceleration of vehicles. In this regime, one would think
that crashes do not occur, as drivers may brake as hard
as they desire. This is usually true. When the maximum
acceleration is limited to 10 m/s2 and 1.7 m/s2, respec-
tively (the latter is the value given by Gipps [13] as the
maximum desired acceleration that a driver would want to
undertake), the maximum breaking undertaken by drivers
increases to −19.81 m/s2 and −23.11 m/s2, respectively.
This means that there are even more unrealistic accelera-
tions than before. Also by reducing amax, the severity of
shock waves is generally increased.

We conclude that this method also fails to produce
more realistic values for the acceleration of vehicles in a
platoon.

3.3 Restrict breaking

Conversely, when restricting the breaking capability of ve-
hicles but allowing positive acceleration to be unlimited,
one would expect problems to occur, as vehicles would not
be able to slow down quickly enough when they approach
the congested region. Limiting breaking to 5 m/s2 causes
crashes and the maximum acceleration that is achieved is
21.98 m/s2. Note that the maximum theoretical value of
acceleration is v̇max = aV (b → ∞) = 32.14a m/s. How-
ever, the latter value of 21.98 m/s2 does not have any
real significance as the model brakes down after the first
crash. In any case, the values of acceleration are wholly
unrealistic, and the method fails.

In the context of realistic accelerations, the question is
raised as to which values of the sensitivity, a, have physical
meaning for the OV model. Without pilot vehicle data —
that is data gathered by tracking an individual vehicle as
it moves through traffic and monitoring its behaviour —
it is not possible to fit a (in contrast to the speed-headway
function which can be fitted from (MIDAS) data loops, for
example; see Abou-Rahme [16]). One way to determine a
minimum value of a is to investigate the issue of whether
a car starting from infinity is able to come to rest safely
behind a stationary object [3], modelled by the standard
OV model.

To conclude this chapter, it appears that our intu-
itive idea for limiting the magnitude of acceleration is
not successful. Accelerations and decelerations may not
be strongly limited together without causing vehicles to
crash. It is possible to limit only accelerations without
causing crashes, but then the values of deceleration pro-
duced are even more unrealistic than before. Similar con-
clusion hold in the opposite case of limiting breaking only.

4 Time delay

Another drawback to the standard OV model is that it
does not account for the reaction time of drivers. It as-
sumes that the driver of a vehicle can instantaneously de-
cide and act on what is happening around him. This is
obviously not the case in real life. Drivers need time to
size up the actions around them, weigh up the options
and then act. Thus in this section, we look at adding in
a delay to the standard OV model to represent drivers’
reaction time and investigate in how far this affects the
maximum values of acceleration and deceleration in the
system.

We follow the delay model of Bando et al. [9]

v̇n(t + T ) = a [V (bn(t)) − vn(t)] (6)

with an explicit delay time T . There has been previous
work on this model [9,17], in which linear stability analysis
and numerical simulations were carried out.

Bando et al. [9] argue that there exist two regimes for
the delay time. For T < 0.2 s, the delay does not have
much of an effect on the flow solution and can be disre-
garded. For T > 0.2 s, it has a very remarkable effect on
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the flow leading to unphysical flow solutions. The authors
conclude that an upper bound for the delay time has to
be introduced to avoid such scenarios.

Davis [17], however, argues that this is actually a set-
back of the OV model in that it does not allow for realistic
explicit delay times of the order of 1 second [18]. In this
case, the author has observed the occurrence of crashes
which should not occur in the model for the parameters
used in his study.

In addition to confirming his results, we have found
that keeping a fixed at a = 3.0 s−1 and increasing T from
0.25 s to 0.3 s results in unrealistic backwards moving
vehicles. This is in full agreement with the observation by
Bando et al. [9]. However, we interpret this occurrence of
backwards moving vehicles without crashes as a failure of
the model rather than limiting T to values smaller than
0.2 s [18].

Moreover, we found that the recommended restriction
to T < 0.2 s does not solve the problem of unrealistic ac-
celeration and breaking, and has only a miniscule impact.
Since this is what we were trying to solve with the explicit
introduction of delay, we conclude that delay time (alone)
does not resolve in a realistic OV traffic flow model.

The same conclusion holds true for other delay models.
One example is a model suggested by Nagatani et al. [19]
which extends the OV model (1–3) by an ODE for the
relaxation of the optimal velocity, Vn, itself

V̇n = b {aV (bn) − Vn} . (7)

Here, the additional variable Vn replaces Vn(bn) in (1),
and V (bn) is some optimal-velocity function. This model,
which is strictly speaking not a delay but a relaxation
model, has very interesting features with respect to meta-
stability and flow transitions but cannot solve the problem
of large accelerations.

5 Multiple look-ahead in optimal-velocity
models

In this section, we perform our final modification to the
OV model. We introduce terms to model the anticipation
of drivers, who in reality act not only to the behaviour
of the vehicle directly in front, but also to the behaviour
of those further ahead. We analyse two different interpre-
tations of this idea, which we refer to as model A and
model B.

5.1 Model A

We consider

v̇n = a




k∑
j=0

βjV (bn−j) − vn


 , (8)

where βj > 0 and
∑k

j=0 βj = 1 so that uniform flow
solutions are the same as in the standard OV model

(k = 0). Here, the optimal velocity of a driver is given
by a weighted sum of the speed-headway function eval-
uated at his/her own headway and at the headways of
several vehicles in front. Thus, if the headway of vehicle
n − 1 is small, then vehicle n will have a lower optimal
velocity than in the standard OV model. Hence, vehicle
n will tend to brake earlier when approaching congested
traffic.

A model which somewhat falls into this category was
proposed by Nagatani [20] in the form of a difference equa-
tion modelling time delay τ . The coupling to two vehicles
ahead is described by

xn(t+2τ) = xn(t+τ)+τ [(1 − β)V (bn(t)) + βV (bn−1(t))] .
(9)

Difference equations are beyond the scope of this pa-
per (see also the Kerner-Klenov model [21]). However, it
should be noted that the author observed less severe ac-
celerations and an overall stabilisation of the flow in the
numerical simulations (see also Sect. 7).

One would expect the βj to decrease as j increases,
as drivers would tend to weight the headway of vehicles
closer to them more importantly than those further ahead.
However, they might generally depend on time.

5.2 Model B

This model is taken from Lenz et al. [4,22]. We suppose
that the optimal velocity of driver n is given by a weighted
sum of the original OV function, evaluated at the distance
(suitably normalised) to each of several vehicles ahead. We
have

v̇n = a




k∑
j=0

βjV

(∑j
l=0 bn−l

j + 1

)
− vn


 (10)

where again βj > 0 and
∑k

j=0 βj = 1 so that uniform flow
solutions are the same as in the standard OV model.

Arguably, model A seems more intuitive, since the
driver anticipates likely reactions of further drivers ahead,
more so than a driver in model B. However, Lenz et al.
have found model B to reveal some very interesting fea-
tures, some of which can be validated against real traffic
data such as the speed of shocks in stop-and-go traffic.

5.3 Other models

There are many more ways to define multiple look-ahead
models based on the standard OV model. An example is

v̇n = a


V


 k∑

j=0

βjbn−j


− vn


 , (11)

corresponding to the standard OV model with an aver-
age (weighted) headway,

∑k
j=0 βjbn−j , and

∑k
j=0 βj = 1.

However, we will not further pursue other models but
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should be aware of the fact that there is no unique mod-
elling of many-neighbour interaction.

In what follows, we refer to single look-ahead or simple
look-ahead when β0 = 1.0 and βj = 0 for j > 1. Corre-
spondingly, we define double look-ahead as β0, β1 �= 0 and
βj = 0 for j > 1, and triple look-ahead as β0, β1, β2 �= 0
and βj = 0 for j > 2.

6 Stability analysis

6.1 Standard OV model

The standard OV model, equation (1), is unstable towards
arbitrarily small perturbations of uniform flow solutions
when

2V ′(b) > a (12)

holds [2]. This defines a critical sensitivity acrit, above
which the flow is always linearly stable, depending on the
chosen OV function. For values of a smaller than acrit,
this defines also an intermediate density regime where
the flow is linearly unstable [2], which is in accordance
with traffic data. This (and the meta-stable regime [23])
is where stop-and-go traffic patterns emerge from [2,24].
Hence, any modified OV model must still reproduce a lin-
early unstable density regime or it should otherwise be
disregarded.

6.2 Model A

We will now investigate how the instability is affected by
the inclusion of multiple look-ahead terms.

Following the analysis of Appendix A, the neutral sta-
bility line in the a–b plane is defined by

V ′(b)
a

= −
∑k

j=0 βj {cos[(j + 1)ξ] − cos(jξ)}{∑k
j=0 βj {sin[(j + 1)ξ] − sin(jξ)}

}2 , (13)

where we assume perturbations of the nth vehicle to the
uniform flow solution proportional to eλt einξ.

This equation is still rather complicated in its full gen-
erality, so we analyse it by considering some special cases.

6.2.1 All βi equal

If βj ≡ β = 1/(k + 1), neutral stability is now defined by
(see Appendix A)

V ′(b)
a

=
k + 1

2
. (14)

Notice that for k = 0, i.e. the standard OV model, the
stability criterion checks with that which was obtained in
the previous section, equation (12).

We observe from equation (14) that when k is in-
creased, the flow tends to be more stable, i.e. for the same
V and b, a must be smaller for unstable flow. This is in
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Fig. 3. Polar coordinates (angle ξ) plot of the linear stability
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be 1.0 where first instability occurs (a = 1.44 s−1).
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for triple look-ahead, β = (1/3, 1/3, 1/3). b: right hand side of
equation (46); a: left hand side of equation (46) set to be 1.5
where first instability occurs (a = 0.96 s−1).

accordance with results found in other many-neighbour
interaction models (see Nagatani [20] and Sect. 6.2.4 [4]).

For example, examine the case where k = 1 and
β = (1/2, 1/2). We wish to examine how instability oc-
curs. This can be seen in Figure 3 where each side of
equation (46) has been plotted separately using polar co-
ordinates for k = 1. The left hand side is a circle taken to
have radius 1 to illustrate the first time that the curves in-
tersect, representing the onset of instability. Thus taking
b = 25 m, so that V ′(b) = 1.44 s−1, solutions are stable
for a > 1.44 s−1 and unstable for a < 1.44 s−1, which is
supported numerically with an initial value solver.

Similarly in Figure 4, the same curves have been plot-
ted except now k = 2 and β = (1/3, 1/3, 1/3). In this
case, the singularities of the right hand side of equa-
tion (46) have the value 3/2 at ξ = 0, 2π/3 and infinity at
ξ = π/3, π. Here, the onset of instability is when the circle
defined by the left hand side has value 3/2. Thus taking
b = 25 m, so that V ′(b) = 1.44 s−1, solutions are stable
for a > 0.96 s−1 and unstable for a < 0.96 s−1. Again,
this is supported by numerical simulation.
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2
p′(ξ)
q′(ξ)

=
0.6 sin(3ξ) + 0.2 sin(2ξ) + 0.2 sin ξ

[{0.2 sin(3ξ) + 0.1 sin(2ξ) + 0.2 sin ξ} {0.6 cos(3ξ) + 0.2 cos(2ξ) + 0.2 cos ξ}] . (16)

6.2.2 Take βi different

Taking the βj equal has only limited use, since they are
generally going to decrease as j increases, because drivers
attach less significance to the behaviour of vehicles far
ahead. So we now consider the general case of different βj .

It is not obvious where the potential singularities of
the right hand side of equation (13) are, so we simplify
by analysing a specific example. We choose k = 2 with
β0 = 0.5, β1 = 0.3 and β2 = 0.2. Then equation (13)
becomes

V ′(b)
a

= −0.2 cos(3ξ) + 0.1 cos(2ξ) + 0.2 cos ξ − 0.5

{0.2 sin(3ξ) + 0.1 sin(2ξ) + 0.2 sin ξ}2 ,

(15)
where we may denote the right hand side by p(ξ)/q(ξ).
This right hand side has potential singularities at ξ =
0, π/2 and π. (Again we consider only values of ξ between
0 and π, since the polar plot is symmetric in the horizontal
axis.)

For ξ = 0 the numerator is also zero, and so we need
further analysis to calculate the limit as ξ → 0. Differen-
tiating both top and bottom gives

see equation (16) above.

However at ξ = 0, both the numerator and denominator
evaluate to zero. Thus we need to differentiate again and
apply L’Hôpital and find

lim
ξ→0

p′′(ξ)
q′′(ξ)

= 0.6. (17)

However, for ξ = π/2 and π the numerator of equa-
tion (15) takes a negative value indicating that the right
hand side tends to positive infinity at these values of ξ.

Figure 5 shows polar plots of the curves defined by
each side of equation (15). The circle has radius V ′(b)/a
= 1.2, showing the first time the curves intersect. This
again is where instability first occurs as a is decreased.

6.2.3 The ξ = 0 mode

Assuming that instability first occurs for long wave length
perturbations (see Appendix A), we obtain the neutral
stability criterion for general look-ahead

V ′(b)
a

=
1
2

k∑
j=0

βj(2j + 1). (18)

The standard OV model is retrieved at k = 0.
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Fig. 5. Polar coordinates plot of the linear stability criterion
for triple look-ahead, β = (0.5, 0.3, 0.2). b: right hand side of
equation (15); a: left hand side of equation (15) set to be 1.2
where first instability occurs.

6.2.4 Model B

The stability criterion for model B has been discussed in
detail by Lenz et al. [4]. Without further reasoning, the
authors also conclude that the first mode to go unstable
occurs at ξ = 0. This is supported by the analysis of model
A which shows this tendency in Figures 3, 4 and 5, re-
flected by equation (18). Now, we obtain neutral stability
at ξ = 0 when

V ′(b)
a

=
1
2

k∑
j=0

βj(j + 1). (19)

As for model A, we find again that many-neighbour inter-
action leads to more stable flow. However, for the same
initial uniform flow conditions (headway) and the same
vector β, model A is more stable than model B, mean-
ing that a can be lower than in model B without reaching
linear instability. This is somewhat reflected by the state-
ment that one’s reaction should also take into account the
next likely reaction of the driver ahead.

We conclude that both model A and B leads to flows
of higher stability than the standard OV model as they
anticipate traffic events ahead. For model B, we refer for
further analysis to Lenz et al. [4].

6.2.5 Maximum stability

It is easy to see that for β0 = 1, the flow becomes more
stable with the increase of any of the βj (j = 2, 3, ..., k).
However, if we also impose

k∑
j=0

βj = 1 (20)
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and βj ≥ 0, there are one global maximum and minimum
with respect to the overall linear stability of the flow: βk =
1 and β0 = 1, respectively. Upon maximising the functions
given by the right hand sides of (18) and (19) subject
to the condition (20) over the domain 0 ≤ βj ≤ 1 for
j = 1, ..., k, a simple analysis with Lagrange multipliers
reveals that there are no local extrema, but the global
maximum and minimum stated above. In this sense, the
standard optimal-velocity model with β0 = 1 is the most
unstable model of type A and B. However if β0 = 0, we
are dealing with a completely unrealistic model in that it
allows for crashes due to the absence of reactions to the
next car ahead. The same conclusions hold true for models
of type C.

7 Numerical results: discrete multiple
look-ahead OV models

Multiple look-ahead and its associated modified linear sta-
bility have a profound effect both on the fundamental di-
agram [20] as well as on travelling wave solutions, espe-
cially shock wave solutions of stop-and-go wave patterns.
The upstream speed of such waves increases with stronger
coupling to further cars ahead, which is what one would
expect from intuition. In addition, the hysteresis of stop-
and-go traffic, a limit cycle in the phase space of a vehicle
as it passes through such traffic, is less pronounced due to
increased anticipation of traffic ahead [4]. These observa-
tions hold true for models of both types.

7.1 Acceleration, waves and crashes

We now turn to the main problem of the standard
OV model, the unrealistic acceleration that arises in the
numerical predictions of the vehicle motion.

It turns out that among the three means of trying to
restrict these values to more realistic magnitudes, (cut-
off, delay and multiple-look ahead), multiple-look ahead
proves most useful. For example, taking β0 = 0.5, β1 = 0.3
and β2 = 0.2, the maximum values of acceleration and
deceleration at a = 1.0 s−1 in model A are about 3.8 m/s2,
whereas for model B, we found 4.4 m/s2. Both values,
and in particular model A, are very close to, if not exactly
what one finds in real traffic. Figure 2 shows an example of
acceleration in a double look-ahead model with β1 = 0.3.
Moreover, crashes only occur at very low values of the
sensitivity, a, or very extreme flow situations.

The dimensionless OV model [1] with

V (b) = tanh(b − 2) + tanh(2) (21)

also shows the large impact of many-neighbour coupling
on travelling wave solutions and associated values for the
acceleration. In Figure 6, travelling wave solutions are
shown for three types of multiple look-ahead, connecting
upstream headway, bu = 3.0, with downstream headway,
bd = 1.8. The length scale, over which adjustments take
place, changes from about ∆x = 20 to ∆x = 50 as the
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driver increasingly anticipates events further downstream.
Correspondingly, the magnitude of the maximum accelera-
tion drops from about 0.5 to 0.1, a very significant change,
revealed in Figure 7.

For the same look-ahead models, Figure 8 exhibits a
snapshot of vehicles accelerating almost from rest to al-
most maximum speed. The shape of the knee that develops
again depends on the model, and the slope becomes more
gentle with increasing look-ahead. In accordance with the
previous findings, the maximum acceleration again de-
creases significantly, this time by a factor of about 4 (see
Fig. 9).

We see that realistic multiple look-ahead parameters
significantly reduce the magnitudes of the maximum ac-
celeration inherent in the system and might lead the way
to more realistic models. Generally, the values of {βi} de-
pend on the traffic situation and would vary with time
and space.
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This leaves the question as to how the parameters βj

(j = 1, ..., k) and the sensitivity a might be determined,
once an OV function has been chosen. In order to repro-
duce realistic traffic flow, we must make the following min-
imal demands:

1. the fundamental diagram must contain a region of in-
stability over a density regime in accordance with real
traffic data;

2. upstream travelling shock waves of stop-and-go traffic
must have the right magnitude of speed;

3. maximum values of acceleration and deceleration must
be within realistic orders;

4. βj < βj+1 for j = 1, 2, 3, ..., k;
5. it is reasonable to assume a maximum amount of vehi-

cles ahead which have an effect on the driver, e.g. k = 2
or k = 3;

6. crashes should not occur in simulations of “moderate”
flow conditions.

Therefore, we believe that the choice β0 = 0.5, β1 =
0.3, β2 = 0.2 is very reasonable for the OV model as pre-
sented in this paper.

However, similar requirements should be made for any
car-following model that contains multiple look-ahead.
Moreover, multiple look-ahead may even prove inevitable
in order to fulfil all these requirements. At this point, we
should refer to the work of Nagatani [20] who studied the
dynamics of the difference equation (9), representing mul-
tiple look-ahead (and delay). The author found in accor-
dance with the results of this paper that many-neighbour
coupling stabilises the flow and results in less severe shock
waves (and hence acceleration). In addition, it reduces the
area of coexisting traffic states in the bifurcation diagram.
This gives an indication on how strong the effect of mul-
tiple look-ahead can be, resulting in non-local continuum
models (Sect. 8), and that it needs to be further investi-
gated.

7.2 Synchronised flow

While a detailed investigation of how many-neighbour in-
teraction might be linked to the phenomena of synchro-
nised flow [21,25–28] is beyond the scope of this paper,
a brief discussion should highlight where potential mod-
elling advantages of next-to-nearest neighbour models lie.

As speculated by Lenz et al. [4], multiple look-ahead
enhances driving in small platoons and might be coupled
to the phenomena of synchronised flow [24]. In addition,
it seems to be a more realistic model both with respect
to real driver anticipation of the flow and the maximum
values of acceleration. While the latter is certainly true
in dense traffic, the first speculation has not been vali-
dated to-date and is questionable since synchronised flow
is mainly triggered by inhomogeneities (such as on-ramps)
rather than by the vehicle dynamics on a straight road. In
fact, only the car-following model as proposed by Kerner
and Klenov [21] has been shown to exhibit synchronised
flow solutions. However, it differs from “classical” car-
following models in a sense that it is based on the as-
sumption of multiple steady states. Moreover, its govern-
ing equation is a complex difference equation with a time
step size of about 1 second, effectively representing delay.
This is similar in spirit to Nagatani’s model (9) [20]. While
a difference equation, where the step size compares to the
reaction time, might be a controversial traffic model, it
surely adds realism to the model through the inherent
delay.

At this point, it remains unclear as to how to produce
a multitude of steady states with a simple car-following
model based on differential delay equations and multi-
ple look-ahead alone, without their explicit introduction
through a model similar to Kerner and Klenov’s. However,
Nagatani showed [20] that multiple look-ahead changes
the shape of the fundamental diagram. This leads to the
question whether dynamic many-neighbour interaction,
i.e. d

dtβi �= 0, should enter a realistic microscopic traffic
model, especially since the βi will depend on the traffic
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density. This is surely an interesting issue for future re-
search. Another point, which remains unresolved to the
authors, is whether the Kerner-Klenov model exhibits re-
alistic values for acceleration and braking. Furthermore,
it should also be investigated as to how many-neighbour
coupling would change the flow predictions of the Kerner-
Klenov model.

8 Non-locality in continuum models

We now focus on the problem of how to incorporate mul-
tiple look-ahead into continuum models. This section will
explore three such approaches for model A, where a simi-
lar analysis applies to model B.

8.1 Approach 1

Car-following models can be linked to a continuum coun-
terpart using a transformation relating the headway bn of
the n-th car, located at xn, to the local density of the flow,
ρ(xn, t). Berg et al. [29–32] have shown that a natural way
of defining such a transformation is by demanding

∫ xn+bn

xn

ρ(y, t) dy = 1, (22)

followed by an extension of xn to all real numbers describ-
ing the road segment. In turn, bn becomes a continuous
function of x, b(x), via

∫ x+b(x)

x

ρ(y, t) dy = 1. (23)

This transformation implies conservation of cars, and pre-
serves the stability criterion (at large wave lengths) and
wave solutions [30]. Therefore, it has been regarded as a
continuum analogue.

For multiple look-ahead, we can hence define the con-
tinuum analogue of model A formally as

vt + vvx = a




k∑
j=0

βjV (bj(x)) − v


 , (24)

with local headways, bj(x), defined iteratively by

∫ x+b0

x

ρ(x + y, t) dy = 1, (25)

∫ x+
∑ j

m=0 bm

x+
∑ j−1

m=0 bm

ρ

(
x +

j−1∑
m=0

bm + y, t

)
dy = 1 (1 ≤ j ≤ k).

(26)

We observe that multiple look-ahead models are linked
to non-local continuum models expressed by partial dif-
ferential equations coupled to integral equations for the

headway. This results in a very complex formulation rem-
iniscent in its simplest form of the non-local continuum
model suggested by Nagatani [33,34]

(ρv)t = āρoV̄ (ρ(x + 1)) − āρv, (27)

which is, like equations (24–26), closed by the conservation
of cars

ρt + (ρv)x = 0. (28)

However, while Nagatani approximates the various head-
ways, bj, by an average headway (here: dimensionless
headway one), we are now dealing with a complete macro-
scopic description of the microscopic multiple look-ahead
model.

It suffices to say that a numerical simulation of the
above continuum model, (24), (25), (26) and (28), poses
extreme demands to computational power. However, be-
ing an exact analogue of the original multiple look-
ahead OV model (8) in the spirit of previous transforma-
tions [30], it is a good starting point for further analysis
of the continuum description.

8.2 Approach 2

For the standard OV model, Berg et al. [30] showed how
to approximate the local headway by the local density
using (23) in order to obtain a closed system of partial
differential equations (PDE) in density and velocity. The
approximation, based on a Taylor expansion of the inte-
gral (23), is the more accurate, the more terms are be-
ing kept in the expansion. In essence, the non-local effects
contained in (22) are approximated by local values, v(x, t)
and ρ(x, t), and their derivatives.

When the interaction with additional vehicles ahead
is growing, this procedure increasingly fails. This is due
to the fact that multiple headways must then be approx-
imated by a small number of local terms in some sort of
Taylor expansion (see next Sect. 8.3).

This encourages us to define a non-local continuum
model of the form

vt+vvx = a

[∫ ∞

−∞
K(x, y, t)V (ρ(x + y)−1) dy

]
−av (29)

with v = v(x, t) and ρ = ρ(x, t), closed by the conservation
of cars, equation (28). The kernel K describes the interac-
tion with the vehicles ahead; the dissipative and pressure
effects [30] are inherent parts of the model through the
integral.

We define the sphere of influence s to be the maxi-
mum distance ahead, whose traffic events a driver reacts
to. Moreover, we might take K(x, y, t) = K(y) on a road of
uniform characteristics, and restrict it to monotonicly de-
creasing functions in y with K(y) = 0, y < 0. Then, (29)
yields

vt + vvx = a

[∫ s

0

K(y)V (ρ−1(x + y)) dy

]
− av. (30)
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This equation, closed by conservation of cars in equa-
tion (28), forms an integro-differential equation for the
density and speed. It contains non-local terms in the in-
tegral.

Arguably, the driver behaviour, and hence the dynam-
ics of the flow, are now incorporated in the kernel K.
For multi-species traffic consisting of different driver types
and/or vehicles [11], the kernel K(x, y, t) has to “flow”
with the vehicles

Kt + vKx = 0, (31)

where we take the initial distribution to be K(x, y, 0) =
K0(x, y). The description becomes intrinsically more com-
plex at on- or off-ramps as well as for lane-changing ma-
noeuvres on multi-lane highways. A question that arises
here is whether a time- and space-dependent K, K(x, y, t),
might explain synchronised flow solutions [24].

8.3 Approach 3: k = 1

For double look-ahead (k = 1), we now derive a contin-
uum model from equations (24, 25) by approximating the
integral equation (25) to second order as in [30]

b =
1
ρ
− ρx

2ρ3
− ρxx

6ρ4
+

ρ2
x

2ρ5
. (32)

Moreover, we write formally to first order

vt + vvx = a {β0V (b1) + β1V (b2) − v} (33)
≈ a {β0V (b1) + β1V (b1 + bxb1) − v} (34)

≈ a {β0V (b1) + β1V (b1) + β1V
′(b1) b1,xb1 − v}

(35)

= a {V (b1) + β1V
′(b1) b1,xb1 − v} . (36)

This is the standard model with a first order correction
term β1V

′bxb (dropping the subscript “1”). Substitution
for b via equation (32) reproduces the continuum model
of the OV model as presented by Berg et al. [30] with a
correction term in β1

ρt + (vρ)x = 0, (37)

vt + vvx = a
[
V̂ (ρ) − v

]
+ aV̂ (ρ)

[
(1 + 2β1)

ρx

2ρ
+

ρxx

6ρ2
− (1 + β1)

ρ2
x

2ρ3

]
(38)

with V̂ (ρ) = V (1/ρ). Hence, we expect this to be a rea-
sonable approximation only for β1 � 0.5. We see that the
effect of multiple look-ahead shows in the modification of
the pressure and nonlinear pressure term, with corrections
to the diffusive term expected at higher orders.
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9 Travelling waves in discrete and continuum
multiple look-ahead OV models

As expected, the third approach works the better, the
less significant the look-ahead is. With increasing antic-
ipation of (nonlocal) events further downstream, the (lo-
cal) Taylor expansion is less accurate as illustrated in Fig-
ures 10 and 11. Nevertheless, the length scales over which
adjustments take place, are predicted rather accurately
by the continuum model, even in the case of β1 = 0.3.
The profiles of the discrete model and the corresponding
continuum model resemble each other with less accuracy,
though. This trend is more pronounced, the larger the
drop in headway across the wave is, and the larger the
look-ahead parameter β1 is. Note that our travelling wave
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analysis in the continuum model does not discuss stabil-
ity of such waves. Hence, the (unstable) travelling wave
solution as predicted by the continuum model at β1 = 0.5
(Fig. 10) is never observed in the initial value solver of the
discrete OV model. Instead, such a drop in headway leads
to crashes.

This is one indication that this method will increas-
ingly fail with higher order look-ahead such as in Figures 6
and 8. Therefore, it has its limits but shows that multiple
look-ahead might have been included in continuum mod-
els such as the Kerner-Konhaeuser model [35] through the
fitting of the pressure and diffusion coefficients to traffic
data, which naturally includes many-neighbour interac-
tion.

10 Discussion

An analysis of the standard optimal-velocity model [1,2],
including a dimensional optimal-velocity (OV) function,
reveals unrealistic values for the acceleration and break-
ing. We suggested four ways of dealing with this prob-
lem: modifying the OV function, limiting acceleration and
breaking by cut-offs, introducing time delay, and including
multiple look-ahead.

We found that only the latter approach is a promis-
ing candidate to lead to models which fulfil the follow-
ing requirements at the same time: (1) the fundamental
diagram must contain a region of instability over a den-
sity regime in accordance with real traffic data, (2) the
speed of stop-and-go shock waves must have the right or-
der of magnitude, (3) the maximum values of accelera-
tion and deceleration must be within realistic orders, and
(4) crashes should not occur in the simulations of moder-
ate flow conditions. These requirements should be posed
for all car-following models. Recent model validations [15]
might reveal as to how far this can be reproduced by var-
ious models.

We believe that multiple look-ahead should not only be
included in the optimal-velocity model, but it might also
have a significant impact on flow simulations, especially
when combined with delay or random effects [36] such as
multi-species flow [11]. Whether many-neighbour interac-
tion is a necessary modelling tool to reproduce synchro-
nised flow [4,24] remains an unsolved issue, but it poses
a number of questions for future work, e.g. how multiple
look-ahead affects meta-stability [37]. What can be con-
cluded is that multiple look-ahead results in a stabilisation
of uniform flow solutions.

P.B. would like to thank Boris Kerner for his discussions about
and clarifications of the phenomena of synchronised flow, three-
phase traffic and the universal features of certain traffic flow
models.

Appendix A: Stability analysis

This appendix briefly derives the stability criteria for
model A.

Recall that ḃn = vn−1 − vn and b̈n = v̇n−1 − v̇n, so
that subtracting the governing equations of two adjacent
vehicles using (8) gives

b̈n

a
+ ḃn −

k∑
j=0

βj [V (bn−j−1) − V (bn−j)] = 0. (39)

As usual, we perturb around the uniform flow solution
bn = b by small amounts b̃n and then linearise to find

¨̃bn

a
+ ˙̃bn − V ′(b)

k∑
j=0

βj

[
b̃n−j−1 − b̃n−j

]
= 0. (40)

It is appropriate to look for solutions of the form eλteinξ,
where ξ = 2πm/N , m = 0, . . . , N−1, and N the number of
vehicles on a circular road [2]. This gives the characteristic
equation

λ2

a
+ λ − V ′(b)

k∑
j=0

βj

[
e−i(j+1)ξ − e−ijξ

]
= 0. (41)

This is a quadratic equation for λ, which can in princi-
ple be solved explicitly. However, it is more instructive
to identify parameters at the onset of instability (neutral
stability) by setting λ = iω for some real ω to give

−ω2

a
+ iω − V ′(b)

k∑
j=0

βj

[
e−i(j+1)ξ − e−ijξ

]
= 0, (42)

which splits into real and imaginary parts,

Re: 0 = −ω2

a
− V ′(b)

k∑
j=0

βj {cos[(j + 1)ξ] − cos(jξ)} ,

(43)

Im: 0 = ω + V ′(b)
k∑

j=0

βj {sin[(j + 1)ξ] − sin(jξ)} . (44)

We eliminate ω to find a relationship involving only V ′(b),
ξ and a,

V ′(b)
a

= −
∑k

j=0 βj {cos[(j + 1)ξ] − cos(jξ)}{∑k
j=0 βj {sin[(j + 1)ξ] − sin(jξ)}

}2 . (45)

A.0.1 All βi equal

Let us take the assumption that βj = β = 1/(k + 1) for
all j. Then equation (45) can be simplified to

V ′(b)
a

= −{cos[(k + 1)ξ] − 1} (k + 1)
sin2[(k + 1)ξ]

. (46)

The right hand side of this equation potentially has
singularities where the denominator vanishes, i.e. at
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ξ = 0, π/(k + 1), 2π/(k + 1), . . . , kπ/(k + 1), π. (We con-
sider only ξ ∈ [0, π], because of the even symmetry in this
formula.)

For ξ = 0, 2π/(k + 1), 4π/(k + 1), etc., the numerator
also vanishes. Thus it is necessary to use L’Hôpital’s rule
to find the value of the right hand side at these points.
Differentiating the top and bottom of the right hand side
of equation (46) with respect to ξ gives

(k + 1)2 sin[(k + 1)ξ]
2(k + 1) sin[(k + 1)ξ] cos[(k + 1)ξ]

=
k + 1

2 cos[(k + 1)ξ]
.

(47)
So by L’Hôpital, the right hand side of equation (46) tends
to (k + 1)/2 as ξ → 2lπ/(k + 1), where l = 0, 1, . . .

For ξ = π/(k + 1), 3π/(k + 1), 5π/(k + 1), etc., the
numerator of equation (46) is nonzero while the denomi-
nator is zero, leading to the limit of the right hand side
of equation (46) being infinity as ξ → (2l − 1)π/(k + 1),
where l = 1, 2, . . .

A.0.2 The ξ = 0 mode

The fact that we have found the global minimum of the
right hand side of equation (45) in all cases (Figs. 3–5) at
ξ = 0, leads us to suspect that this holds for all possible
vectors β. Due to symmetry reasons, we know that we
always have a local extremum at ξ = 0. Without explicit
proof, however, we assume that this coincides with the
global minimum and derive the global stability criterion
for this scenario.

We want to determine the limit of the right hand side
of equation (45) as ξ → 0. Applying L’Hôpital’s rule once
and using the series expansions of cos(x) and sin(x) about
x = 0, we obtain the neutral stability criterion

V ′(b)
a

=
1
2

k∑
j=0

βj(2j + 1). (48)

The standard OV model is retrieved at k = 0.
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